<<<<<<< HEAD
library(foreign)
library(lubridate)
num.decimals <- function(x) {
stopifnot(class(x)=="numeric")
x <- nchar(sub("0+$","",sub("^.+[.]","",x)))
x <- sub("^.+[.]","",x)
nchar(x)
}
x <- 5.2300000
num.decimals(x)
5.1%%1
5%%1
5.12%%2
dat = data.frame(read.csv("/Users/ishaandave/Downloads/listings.csv"))
dat$last_review = as.character(dat$last_review)
123
# run this on actual data with actual people
# getting the bivariate distributions
#
## package for dates is lubridate
dat <- data.frame(
Date=c("29/11/2012","30/12/2012"),
AE=c(1211,100),
Percent=c(0.03,0.43)
)
sapply(data, function(x) !all(is.na(as.Date(as.character(x),format="%d/%m/%Y"))))
sapply(data, function(x) !all(is.na(as.Date(as.character(x),format="%m/%d/%Y"))))
sapply(data, function(x) !all(is.na(as.Date(as.character(x)))))
standarDates <- function(string) {
patterns = c('[0-9][0-9][0-9][0-9]/[0-9][0-9]/[0-9][0-9]', ## YYYY/mm/dd
'[0-9][0-9]/[0-9][0-9]/[0-9][0-9][0-9][0-9]', ## dd/mm/YYYY
'[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]', ## mm/dd/YYYY
)
formatdates = c('%Y/%m/%d','%d/%m/%Y','%Y-%m-%d')
standardformat='%d/%m/%Y'
for(i in 1:3){
if(grepl(patterns[i], string)){
aux=as.Date(string,format=formatdates[i])
if(!is.na(aux)){
return(format(aux, standardformat))
}
}
}
return(FALSE)
}
standarDates(data$Date)
isDate <- function(date) {
if (sapply(date, function(x)
! all(is.na(as.Date(
as.character(x),
format = c("%d/%m/%Y", '%m/%d/%Y', "%Y/%m/%d", "%Y/%d/%m", "%m/%Y/%d", "%d/%Y/%m",
"%d-%m-%Y", '%m-%d-%Y', "%YYYY-%mm-%dd", "%Y-%d-%m", "%m-%Y-%d", "%d-%Y-%m")
))))) {
return(TRUE)
} else{
return(FALSE)
}
}
#
# iso 8601
# YYYY-mm--dd
listings = read.csv("/Users/ishaandave/Desktop/CDC-Leidos/Data/Pretend/listings.csv")
listings = listings[c(1:200),]
month = cities <- gsub("/.*$", "", listings$last_review)
for (i in 1:ncol(listings))
which(sapply(listings, function(x) !all(is.na(as.Date(as.character(x),format="%m/%d/%Y"))))==T)
dates = c("2012-05-23",
"2012-02-29",
"2013-07-20",
"2013-04-04",
"2012-02-28",
"2013-01-11",
"2013-01-02",
"2013-10-22",
"2013-04-02",
"2012-11-17",
"2012-01-08",
"2012-06-19",
"2013-11-30",
"2012-01-30",
"2013-02-29",
"2012-03-24",
"2012-11-18",
"2013-01-30",
"2013-06-15",
"2013-02-05",
"2012-02-11",
"2013-01-21",
"2012-05-07",
"2012-11-19",
"2013-11-01",
"2013-11-07",
"2012-09-26",
"2013-01-16",
"2013-06-03",
"2013-03-28",
"2013-05-01",
"2012-05-26",
"2013-07-07",
"2013-10-16",
"2013-01-07",
"2012-03-27",
"2013-05-29",
"2013-06-23",
"2013-02-22",
"2012-11-05",
"2013-08-13",
"2013-04-30",
"2013-10-13",
"2012-08-08",
"2012-07-21",
"2013-10-12",
"2012-03-07",
"2012-07-09",
"2013-03-13",
"2012-06-27",
"2012-10-14",
"2012-06-28",
"2013-07-16",
"2013-06-15",
"2013-11-01",
"2013-12-09",
"2013-02-16",
"2012-03-24",
"2013-02-28",
"2012-12-01")
d = as.data.frame(dates)
d$e = c(1:60)
for (i in 1:nrow(d)){
d$checkIfDate = "([0-9][0-9][0-9][0-9])[-]([0-1][0-9])[-]([0-9][0-9])"
}
try = str_detect(d$dates, d$checkIfDate)
=======
library(foreign)
library(lubridate)
num.decimals <- function(x) {
stopifnot(class(x)=="numeric")
x <- nchar(sub("0+$","",sub("^.+[.]","",x)))
x <- sub("^.+[.]","",x)
nchar(x)
}
x <- 5.2300000
num.decimals(x)
5.1%%1
5%%1
5.12%%2
dat = data.frame(read.csv("/Users/ishaandave/Downloads/listings.csv"))
dat$last_review = as.character(dat$last_review)
123
# run this on actual data with actual people
# getting the bivariate distributions
#
## package for dates is lubridate
dat <- data.frame(
Date=c("29/11/2012","30/12/2012"),
AE=c(1211,100),
Percent=c(0.03,0.43)
)
sapply(data, function(x) !all(is.na(as.Date(as.character(x),format="%d/%m/%Y"))))
sapply(data, function(x) !all(is.na(as.Date(as.character(x),format="%m/%d/%Y"))))
sapply(data, function(x) !all(is.na(as.Date(as.character(x)))))
standarDates <- function(string) {
patterns = c('[0-9][0-9][0-9][0-9]/[0-9][0-9]/[0-9][0-9]', ## YYYY/mm/dd
'[0-9][0-9]/[0-9][0-9]/[0-9][0-9][0-9][0-9]', ## dd/mm/YYYY
'[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]', ## mm/dd/YYYY
)
formatdates = c('%Y/%m/%d','%d/%m/%Y','%Y-%m-%d')
standardformat='%d/%m/%Y'
for(i in 1:3){
if(grepl(patterns[i], string)){
aux=as.Date(string,format=formatdates[i])
if(!is.na(aux)){
return(format(aux, standardformat))
}
}
}
return(FALSE)
}
standarDates(data$Date)
isDate <- function(date) {
if (sapply(date, function(x)
! all(is.na(as.Date(
as.character(x),
format = c("%d/%m/%Y", '%m/%d/%Y', "%Y/%m/%d", "%Y/%d/%m", "%m/%Y/%d", "%d/%Y/%m",
"%d-%m-%Y", '%m-%d-%Y', "%YYYY-%mm-%dd", "%Y-%d-%m", "%m-%Y-%d", "%d-%Y-%m")
))))) {
return(TRUE)
} else{
return(FALSE)
}
}
#
# iso 8601
# YYYY-mm--dd
listings = read.csv("/Users/ishaandave/Desktop/CDC-Leidos/Data/Pretend/listings.csv")
listings = listings[c(1:200),]
month = cities <- gsub("/.*$", "", listings$last_review)
for (i in 1:ncol(listings))
which(sapply(listings, function(x) !all(is.na(as.Date(as.character(x),format="%m/%d/%Y"))))==T)
dates = c("2012-05-23",
"2012-02-29",
"2013-07-20",
"2013-04-04",
"2012-02-28",
"2013-01-11",
"2013-01-02",
"2013-10-22",
"2013-04-02",
"2012-11-17",
"2012-01-08",
"2012-06-19",
"2013-11-30",
"2012-01-30",
"2013-02-29",
"2012-03-24",
"2012-11-18",
"2013-01-30",
"2013-06-15",
"2013-02-05",
"2012-02-11",
"2013-01-21",
"2012-05-07",
"2012-11-19",
"2013-11-01",
"2013-11-07",
"2012-09-26",
"2013-01-16",
"2013-06-03",
"2013-03-28",
"2013-05-01",
"2012-05-26",
"2013-07-07",
"2013-10-16",
"2013-01-07",
"2012-03-27",
"2013-05-29",
"2013-06-23",
"2013-02-22",
"2012-11-05",
"2013-08-13",
"2013-04-30",
"2013-10-13",
"2012-08-08",
"2012-07-21",
"2013-10-12",
"2012-03-07",
"2012-07-09",
"2013-03-13",
"2012-06-27",
"2012-10-14",
"2012-06-28",
"2013-07-16",
"2013-06-15",
"2013-11-01",
"2013-12-09",
"2013-02-16",
"2012-03-24",
"2013-02-28",
"2012-12-01")
d = as.data.frame(dates)
d$e = c(1:60)
for (i in 1:nrow(d)){
d$checkIfDate = "([0-9][0-9][0-9][0-9])[-]([0-1][0-9])[-]([0-9][0-9])"
}
try = str_detect(d$dates, d$checkIfDate)
>>>>>>> 42793b1b459be795c8201a1f29ca4dd52092f88a
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.